

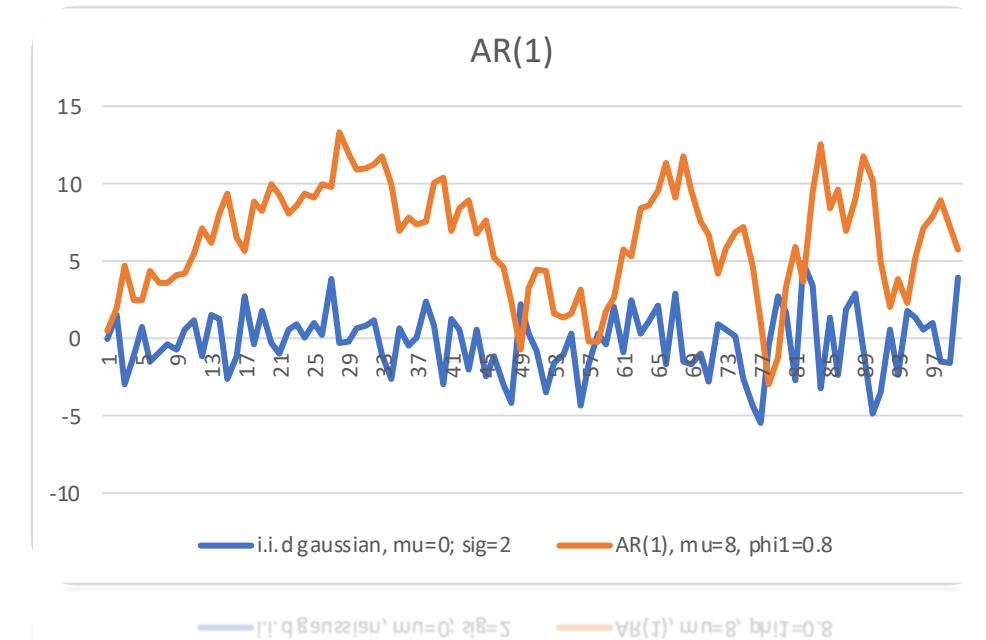
# Water Resources Engineering and Management

(CIVIL-466, A.Y. 2024-2025)

5 ETCS, Master course

**Prof. P. Perona**

Platform of hydraulic constructions

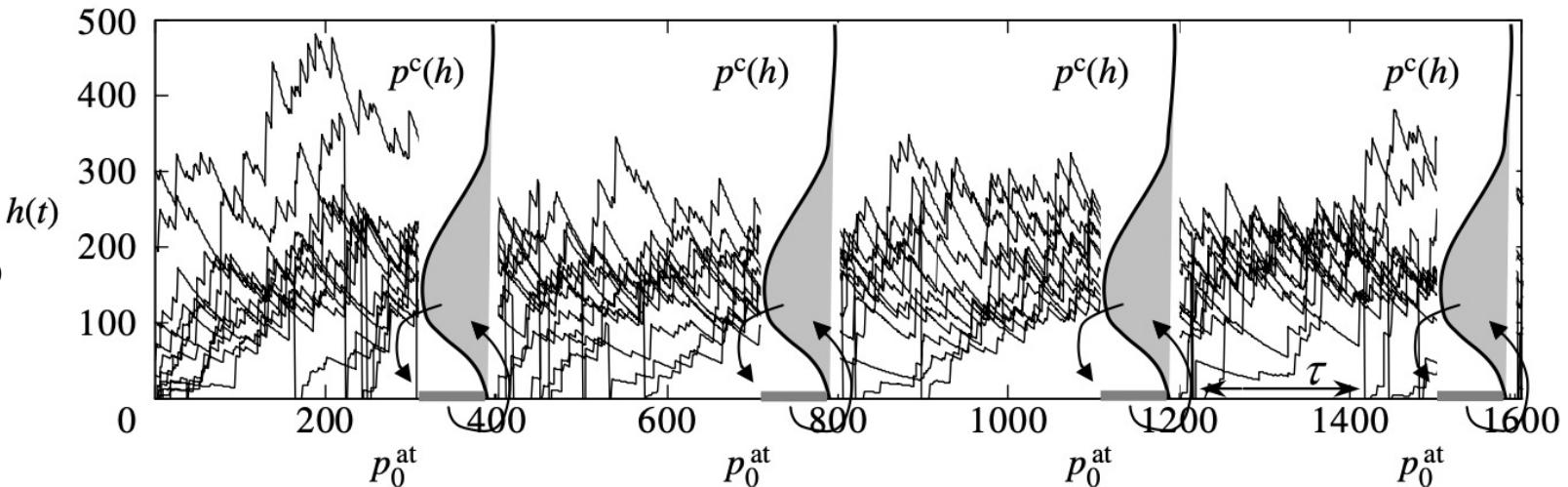


-10 Lecture 7-1: Univariate linear Autoregressive Model

# Stochastic modelling of time series

A FEW IMPORTANT CONCEPTs: we assume the time series to be modeled is stationary and ergodig, hence the available data is representative of the full variability of the population universe

STATIONARITY: Implies that the statistical properties of the series (and of the model representing it) do not change with time



ERGODICITY: Implies that one single realisation is long enough to be representative of the whole ensemble

NOTA BENE: ergodicity cannot be stricktly proved with measured time series. This implies that it is assumed as a working hypothesis for which

Sample mean = ensemble mean  
Sample variance = ensemble average ...and so on

# Autoregressive (Linear) models

# Linear Autoregressive models

Consider the following mathematical model

$$y_t = \mu + \sum_{j=1}^p \phi_j (y_{t-j} - \mu) + \varepsilon_t$$

This is called AR(p) model, i.e. AutoRegressive model of order p with  $0 \leq \phi_j < 1$  (when  $|\phi_j| \geq 1$  the model is non stationary and diverges)

$\varepsilon_t$  is the **noise** term (or innovation), purely random, i.i.d and gaussian distributed with zero mean and variance  $\sigma_\varepsilon^2$

MODEL STATISTICS: are all analytically exact

$y_t$  is also normally distributed

$$E(y) = \mu$$

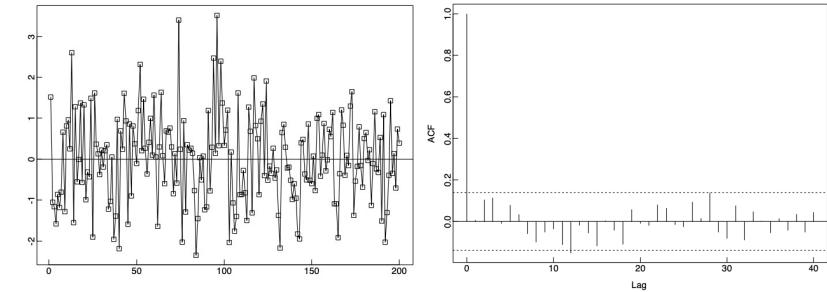
$$\text{Var}(y) = \sigma^2 = \frac{\sigma_\varepsilon^2}{(1 - \sum_{j=1}^p \phi_j \rho_j)}$$

$$\rho_k = \phi_1 \rho_{k-1} + \phi_2 \rho_{k-2} + \dots + \phi_p \rho_{k-p}$$
 Autocorrelation function (Yule-Walker equation)

Expected mean of the model

Variance of the model

This vector is called “partial autocorrelation function”



$$\begin{bmatrix} \rho_1 \\ \rho_2 \\ \vdots \\ \rho_p \end{bmatrix} = \begin{bmatrix} 1 & \rho_1 & \dots & \rho_{p-1} \\ \rho_1 & 1 & \dots & \rho_{p-2} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{p-1} & \rho_{p-2} & \dots & 1 \end{bmatrix} \begin{bmatrix} \phi_1 \\ \phi_2 \\ \vdots \\ \phi_p \end{bmatrix}$$

# AR(1) model

The Autoregressive model order 1 is (p=1)

$$y_t = \mu + \phi_1(y_{t-1} - \mu) + \varepsilon_t$$

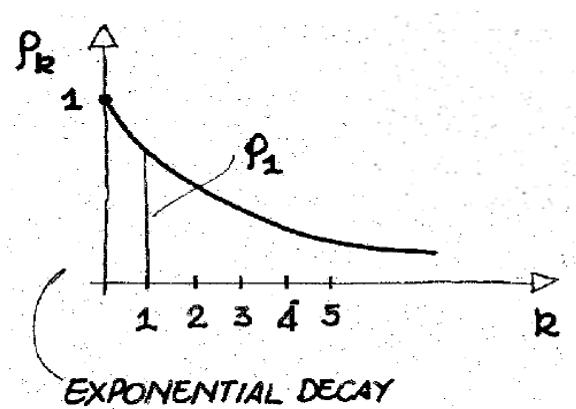
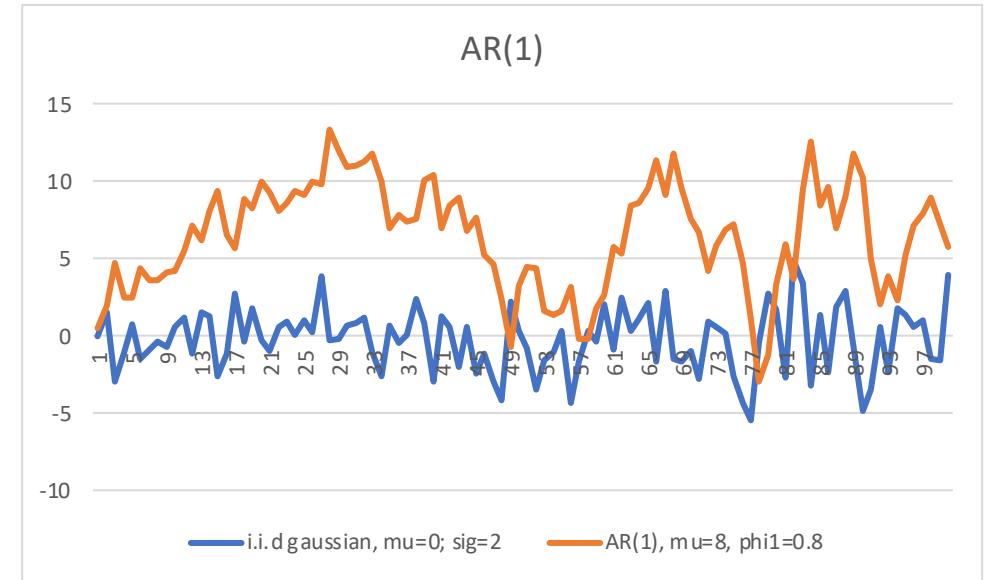
$$E(y) = \mu$$

$$\text{Var}(y) = \sigma^2 = \frac{\sigma_\varepsilon^2}{(1-\phi_1\rho_1)}$$

$$\rho_k = \phi_1 \rho_{k-1} = \phi_1^k$$

Hence

$$\text{Var}(y) = \sigma^2 = \frac{\sigma_\varepsilon^2}{(1-\rho_1^2)} = \frac{\sigma_\varepsilon^2}{(1-\phi_1^2)}$$



Hence, from these statistics it is also easy to identify the model from statistical data properties

|          | lag | 0 | 1       | 2      | 3       | 4      |
|----------|-----|---|---------|--------|---------|--------|
| $\rho_k$ |     | 1 | 0.8     | 0.64   | 0.512   | 0.409  |
| $r_k$    |     | 1 | 0.81577 | 0.6287 | 0.50043 | 0.4246 |

# AR(1) model (example)

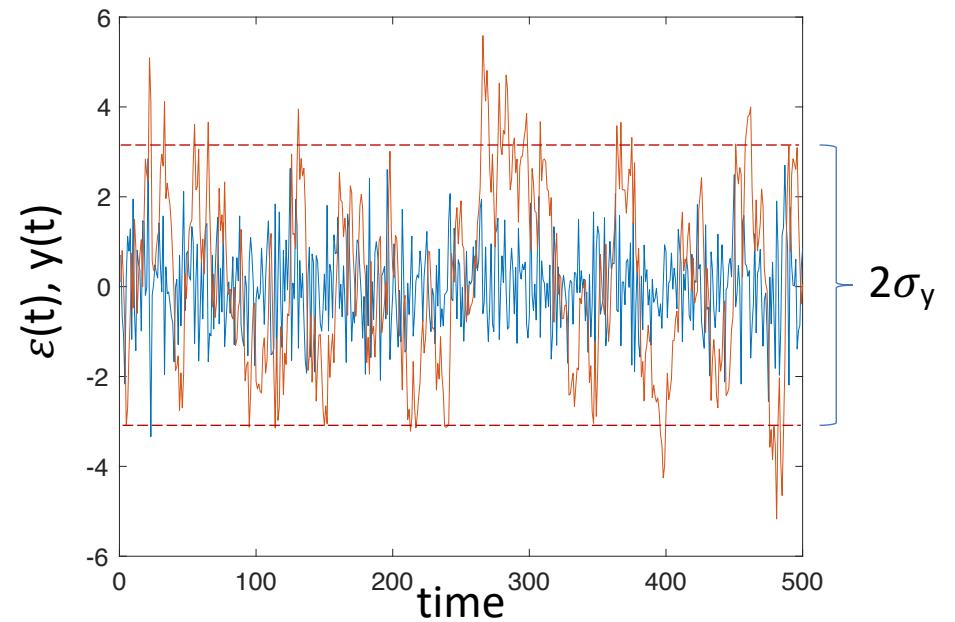
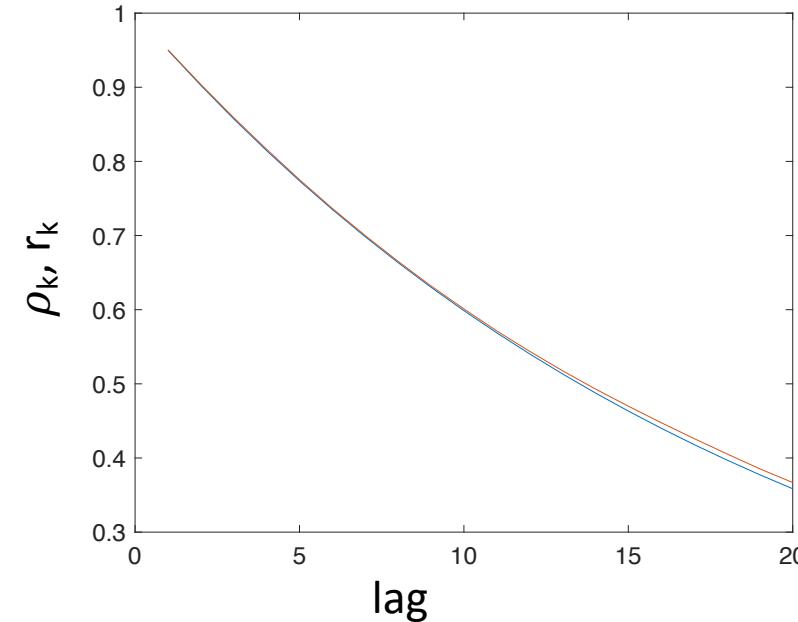
$$\phi_1 = 0.95$$

$$E[\varepsilon] = 0, \sigma_\varepsilon^2 = 1$$

$$E[y] = 0, \sigma_y^2 = \frac{\sigma_\varepsilon^2}{(1-\phi_1^2)} = 10.25$$

$y(t)$  is also normally distributed

Here shows something about what the variance of the generated series becomes when starting from a gaussian distributed noise with mean zero and std=1



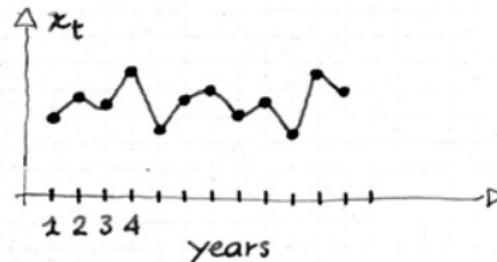
# Example: synthetic data generation with AR(1)

VARIABLE: annual river flow,  $x_t$

MEAN: 470 mm,  $(\bar{x})$

STANDARD DEVIATION: 95.8 mm,  $(s_x)$

AUTOCORRELATION COEFF., LAG1: 0.324,  $(r_1)$



- GENERATION OF  $x_t$  FOR n years  $\rightarrow t, t+1, t+2, t+3$

- MODEL AR(1)

- $\tilde{x}_t = \frac{x_t - \bar{x}}{s_x}$  IS NORMAL DISTRIBUTED

- $x_{t-1} = \bar{x} = 470$  mm

$\tilde{x}_t$  is standardized and has therefore unitary variance, hence  $\sigma_{\tilde{x}}^2 = (1 - \rho_1^2)$

$$\text{AR(1)} \rightarrow \tilde{x}_t = \phi_1 \tilde{x}_{t-1} + \varepsilon_t$$

GAUSSIAN,  $E[\varepsilon_t] = 0$

$$\sigma^2[\varepsilon_t] = \sigma_{\varepsilon}^2 = 1 - r_1^2$$

Standard gaussian variate

$$\text{generating equation: } \tilde{x}_t = \phi_1 \tilde{x}_{t-1} + \sqrt{1 - r_1^2} \tilde{\varepsilon}_t$$

substituting the above assumptions

$$x_t = \bar{x} (1 - r_1) + r_1 x_{t-1} + s_x \sqrt{1 - r_1^2} \tilde{\varepsilon}_t$$

$$x_t = 470 (1 - 0.324) + 0.324 \cdot x_{t-1} + 95.8 \sqrt{1 - 0.324^2} \cdot \tilde{\varepsilon}_t$$

$$t \rightarrow x_t = 549 \text{ mm}$$

$$t+1 \rightarrow x_{t+1} = 437 \text{ mm}$$

$$t+2 \rightarrow x_{t+2} = 563 \text{ mm} \quad t+3 \rightarrow x_{t+3} = 505 \text{ mm}$$

$\tilde{\varepsilon}_t$  RANDOMLY GENERATED

$$\tilde{\varepsilon}_t = 0.87$$

$$\tilde{\varepsilon}_{t+1} = -0.65$$

$$\tilde{\varepsilon}_{t+2} = 1.15$$

$$\tilde{\varepsilon}_{t+3} = 0.05$$

# Example: AR(2) model

The Autoregressive model order 2 is (p=2)

$$y_t = \mu + \phi_1(y_{t-1} - \mu) + \phi_2(y_{t-2} - \mu) + \varepsilon_t$$

Stability conditions  
1.  $(\phi_1 + \phi_2) < 1$   
2.  $(\phi_2 - \phi_1) < 1$   
3.  $|\phi_2| < 1$

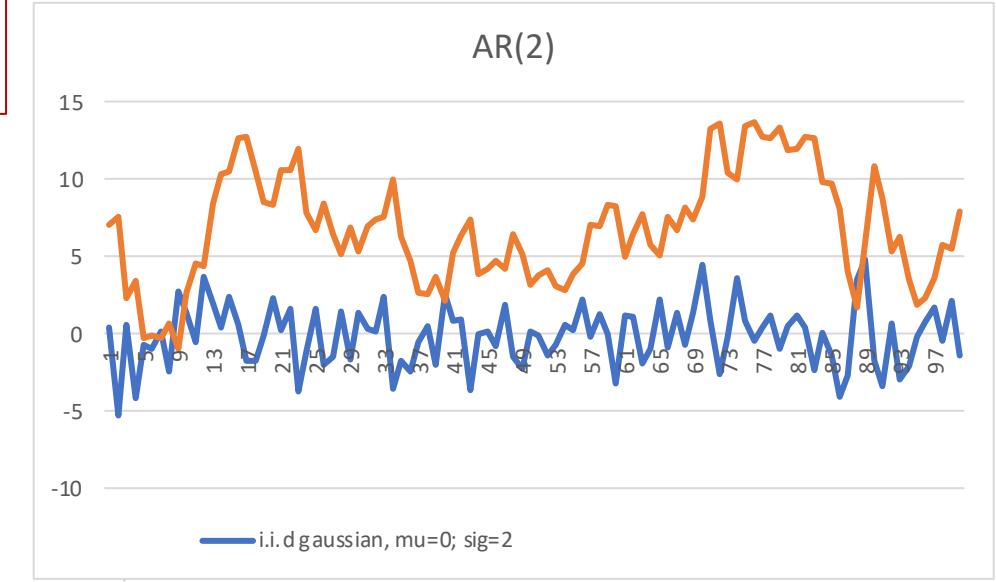
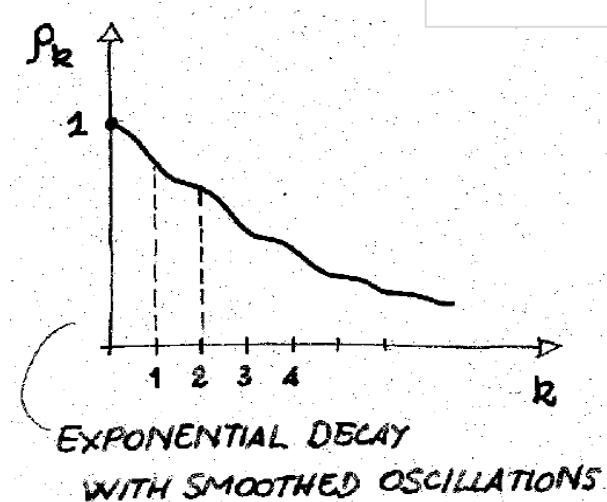
$$E(y) = \mu$$

$$\text{Var}(y) = \sigma^2 = \frac{\sigma_\varepsilon^2}{(1 - \phi_1 \rho_1 - \phi_2 \rho_2)}$$

$$\rho_1 = \phi_1 \rho_0 + \phi_2 \rho_{-1} \quad (\rho_{-k} = \rho_k)$$

$$\rho_2 = \phi_1 \rho_1 + \phi_2 \rho_0$$

$$\rho_1 = \phi_1(1 - \phi_2)$$
$$\rho_2 = \phi_2 + \frac{\phi_1^2}{1 - \phi_2}$$



**Parameter estimation** can be done by means several approaches. The most obvious is the method of moments, where one replaces model statistics with sample statistics and solves for the parameters

# Moving Average (Linear) models

# Moving Average model – MA(q)

Consider the following mathematical model

$$y_t = \mu + \varepsilon_t + \sum_{j=1}^q \theta_j \varepsilon_{t-j}$$

Despite the name "Moving Average", this model should not be confused with the homonymous smoothing technique!

This is called MA(q) model, i.e. Moving Average model of order q with  $0 \leq \theta_j \leq 1$

$\varepsilon_t$  is the noise term (or innovation) , purely random, i.i.d and gaussian distributed with zero mean and variance  $\sigma_\varepsilon^2$

MODEL STATISTICS: are all analytical

$$E(y) = \mu$$

Expected mean of the model

$$\text{Var}(y) = \sigma^2 = \sigma_\varepsilon^2 \left( 1 + \sum_{j=1}^q \theta_j^2 \right)$$

Expected variance does not depend on autocorrelation

$$\rho_k = \frac{-\theta_k + \theta_1 \theta_{k+1} + \dots + \theta_{q-k} \theta_q}{\left( 1 + \sum_{j=1}^q \theta_j^2 \right)}$$

Autocorrelation function depends on model parameters only

The MA model is always stationary and  $\rho_k=0$  ,  $k>q$ !!

# Example: MA(1) model

The Moving Average model order 1 is (q=1)

$$y_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1}$$

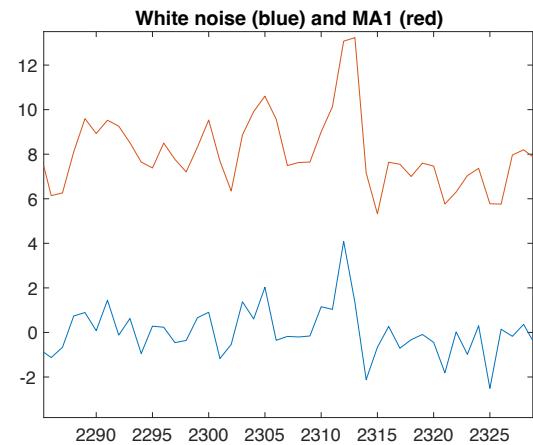
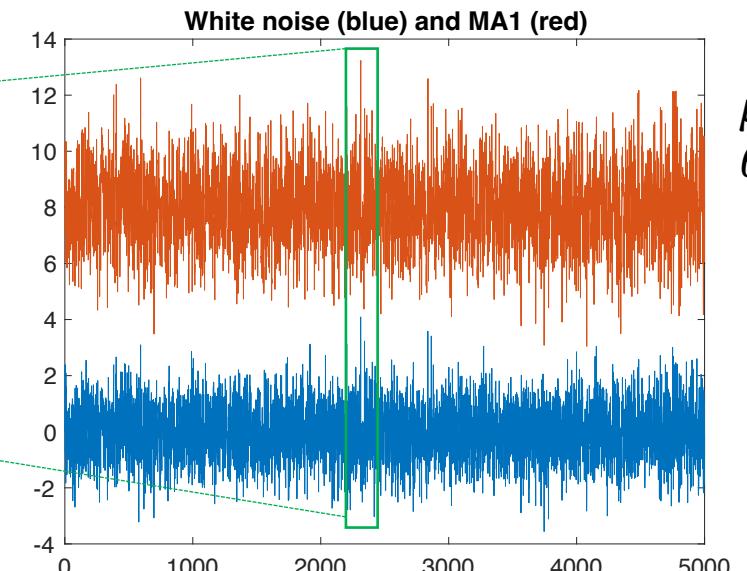
$$E(y) = \mu$$

$$\text{Var}(y) = \sigma^2 = \sigma_\varepsilon^2(1 + \theta_1^2)$$

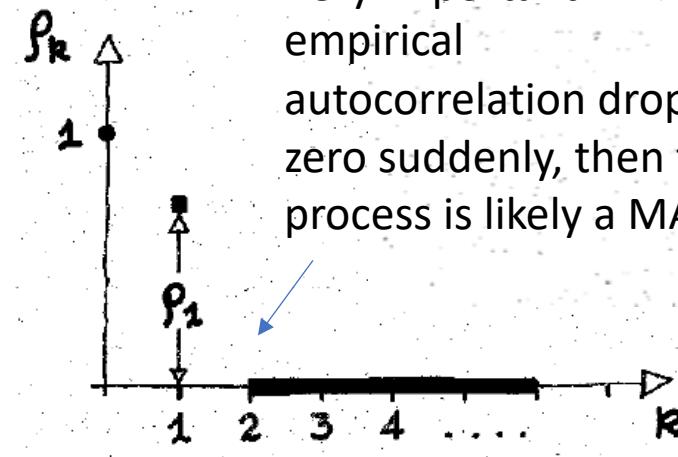
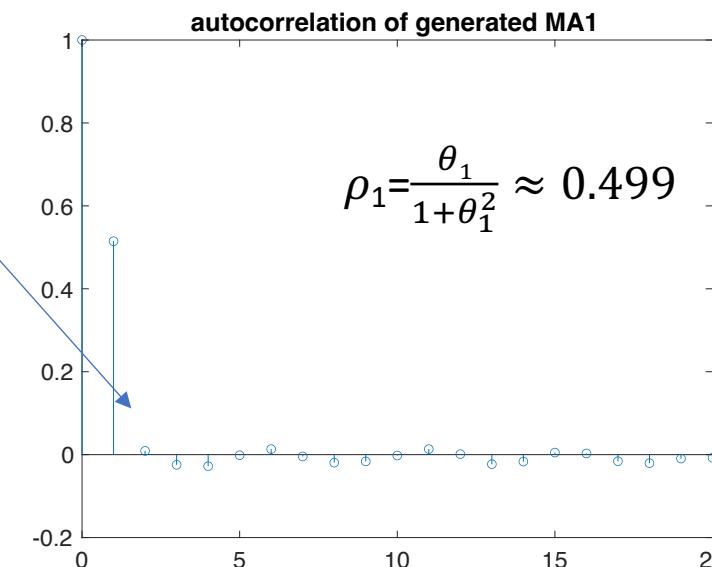
$$\rho_1 = \frac{\theta_1}{(1 + \theta_1^2)}$$

VERY IMPORTANT:  $\rho_k = 0$ ,  $k > 1$

$$\text{Max } (\rho_1) = 0.5$$



Very important : if empirical autocorrelation drops to zero suddenly, then the process is likely a MA



# Example: MA(2) model

The Moving Average model order 2 is (q=2)

$$y_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}$$

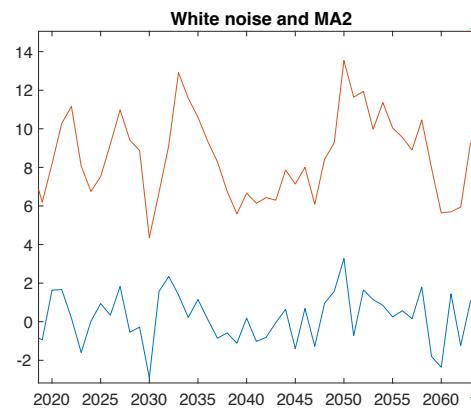
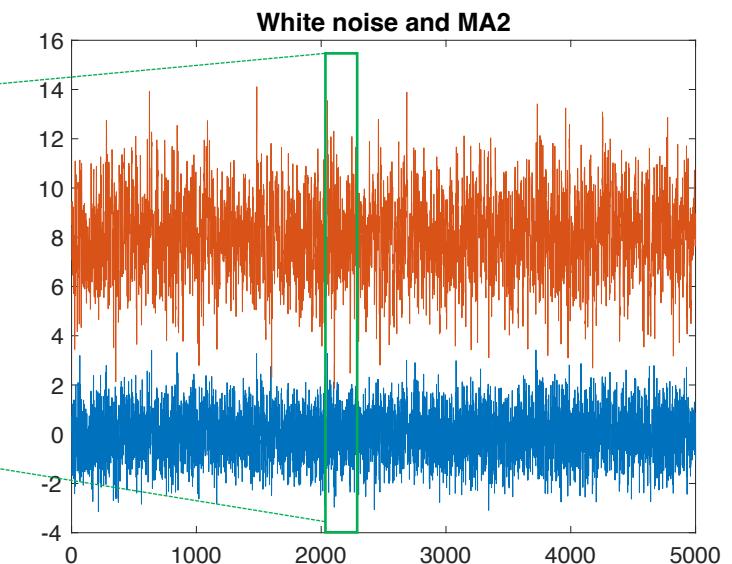
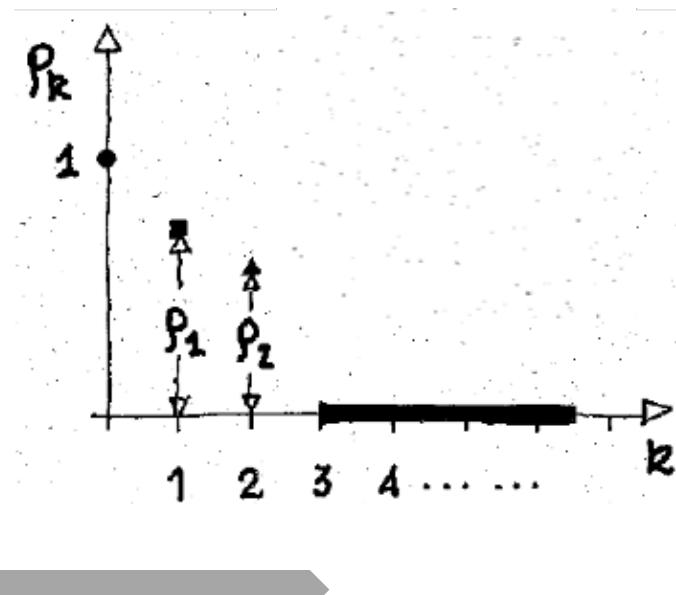
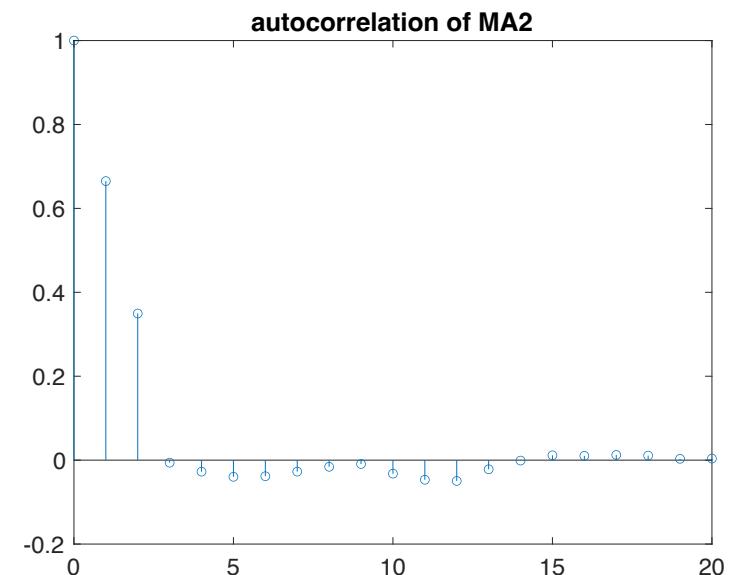
$$E(y) = \mu$$

$$\text{Var}(y) = \sigma^2 = \sigma_\varepsilon^2 (1 + \theta_1^2 + \theta_2^2)$$

$$\rho_1 = \frac{\theta_1(1 + \theta_2)}{(1 + \theta_1^2 + \theta_2^2)}$$

$$\rho_2 = \frac{\theta_2}{(1 + \theta_1^2 + \theta_2^2)}$$

VERY IMPORTANT:  $\rho_k = 0$ ,  $k > 2$



# AutoRegressive Moving Average (Linear) models

# AutoRegressive Moving Average – ARMA(p,q) models

Consider the following mathematical model

$$y_t = \mu + \sum_{j=1}^p \phi_j(y_{t-j} - \mu) + \varepsilon_t + \sum_{j=1}^q \theta_j \varepsilon_{t-j}$$

This is called ARMA(p,q) model, i.e. AutoRegressive Moving Average model of order p,q

$\varepsilon_t$  is the noise term (or innovation) , purely random, i.i.d and gaussian distributed with zero mean and variance  $\sigma_\varepsilon^2$

$$\left. \begin{array}{l} u^p - \phi_1 u^{p-1} + \cdots - \phi_p = 0 \\ u^q - \theta_1 u^{q-1} + \cdots - \theta_q = 0 \end{array} \right\}$$

ARMA parameters must fulfill some mathematical constraints in order to ensure model stability. Such constraints are given by the characteristic equations

This means that the model parameters must all lie within the unit radius circle

# Example: ARMA (1,1)

The ARMA (1,1) model is

$$y_t = \mu + \phi_1(y_{t-1} - \mu) + \varepsilon_t + \theta_1\varepsilon_{t-1}$$

Stability is guaranteed by the stability of the AR(1) process,  
i.e.  $|\phi| < 1$

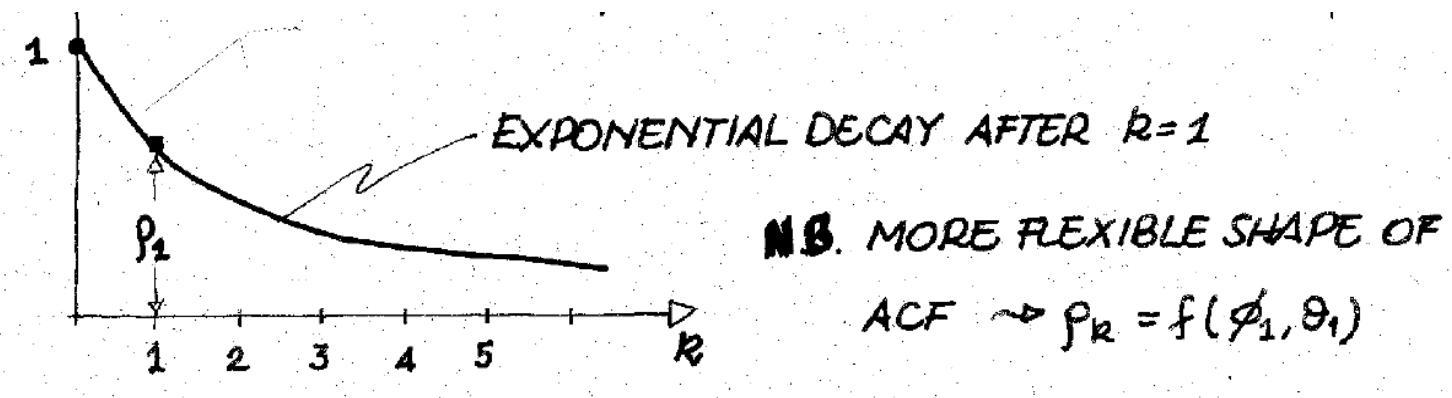
$$E(y) = \mu$$

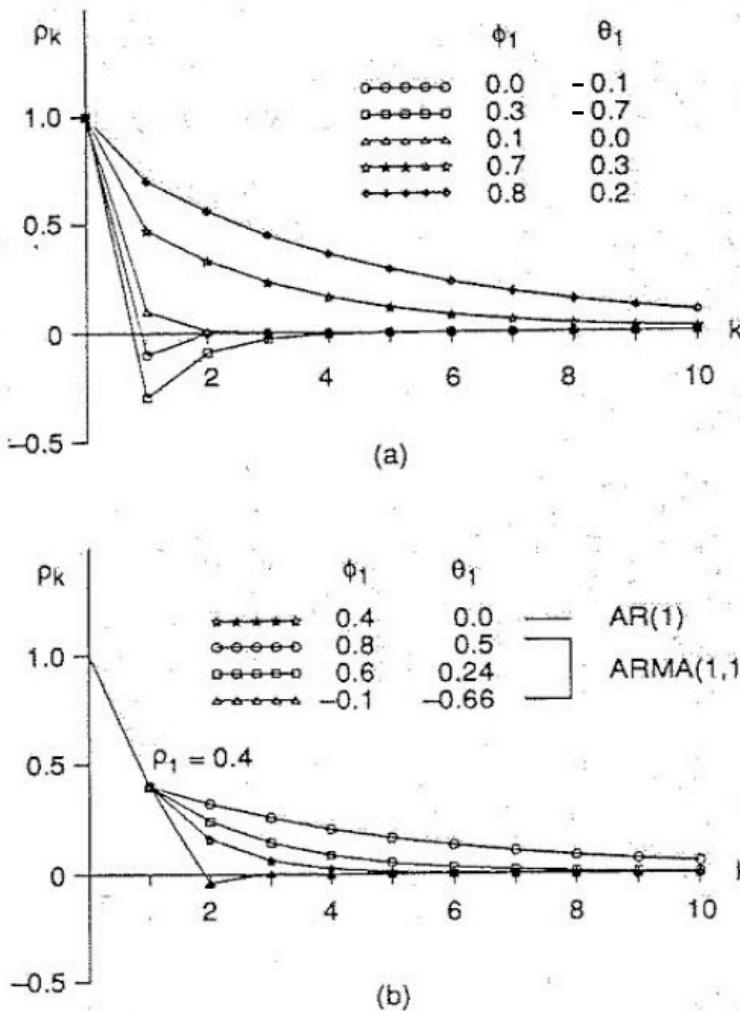
$$\text{Var}(y) = \sigma^2 = \sigma_\varepsilon^2 \frac{(1+2\phi_1\theta_1+\theta_1^2)}{(1+\theta_1^2)}$$

$$\rho_1 = \frac{(\phi_1 + \theta_1)(1 + \theta_1\phi_1)}{(1 + 2\phi_1\theta_1 + \theta_1^2)}$$

$$\rho_k = \phi_1\rho_{k-1}$$

Again exponential decay caused by the AR(1) influence





ARMA processes are more flexible than AR

↓ e.g.

$\rho_k$  of AR(1)  $f(\phi_1)$

$\rho_k$  of ARMA(1,1)  $f(\phi_1, \theta_1)$

AR models represent better short memory processes

ARMA models represent better long memory processes

FIGURE 19.3.1 Correlograms  $\rho_k$  for (a) the ARMA(1, 1) process for various sets of parameters  $\phi_1$  and  $\theta_1$  and (b) the AR(1) and ARMA(1, 1) processes for which  $\rho_1 = 0.4$ .