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PLATEFORME DE CONSTRUCTIONS HYDRAULIQUES

A FEW IMPORTANT CONCEPTs: we assume the time series to be modeled is stationary and ergodig, hence the
available data is representative of the full variability of the population universe
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ERGODICITY: Implies that one single
realisation is long enough to be NOTA BENE: ergodicity cannot be stricktly proved with measured
representative of the whole time series. This implies that it is assumed as a working hypothesis

ensemble for which

Sample mean = ensemble mean
Sample variance = ensemble average ...and so on




PLATEFORME DE CONSTRUCTIONS HYDRAULIQUES

Autoregressive (Linear) models
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Linear Autoregressive models

Consider the following mathematical model

This is called AR(p) model, i.e. AutoRegressive model of order p with

p
Ye =BT 2 (pf(yt—f N “) T & 0<¢;<1 (when|qu| >1 the model is non stationary and diverges)
j=1

& is the noise term (or
innovation) , purely random,
i.i.d and gaussian distributed

with zero mean and variance o2
MODEL STATISTICS: are all analytically exact
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y: is also normally distributed This vector is called
“partial autocorrelation
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AR(1) model
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The Autoregressive model order 1 is (p=1)

AR(1)

Ve = U+ P1(Veeqr — 1) + &

E(y) =u
. Prz' hR}
o 4 .
Var = 0' =€ B 10
(y) (1 ¢1p1) k e i.i.d gaussian, mu=0; sig=2 e AR(1), mu=8, phil=0.8
P = P1Px—1 = X o :L 2 5 y, 5 R !—Ienc.e, from these statistics itis also easy to .
T identify the model from statistical data properties
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AR(1) model (example)

PLATEFORME DE CONSTRUCTIONS HYDRAULIQUES

6
|
I -
$1 = 0.95 e [ e
| ‘H"H‘ | ‘ \‘\‘
E[E] =0 , 0'82=1 gy \‘\ w ‘V“ ‘s \‘ v\u 4‘ Nl \‘\“M T
= Wb A R L A
= g b O R A - 20
E[y]=0, g,%= =10.25 w T (R i
[y] Y (1-¢%) W” W MJ ‘N\‘ mﬁ w 'H,‘@;“ HJN,U |
_______ J,‘___N______’w__J__________L___J_______wr _
i ictri I “H ]
y(t) is also normally distributed -4 | |
-6 1 1 I
0 100 200ti rne300 400 500
1 \
09r
Here shows something about
what the variance of the 81
generated series becomes when =07
starting from a gaussian S -
distributed noise with mean zero ool
and std=1 | S
04 A
0.3 :
0 5 10 15 20

c Pr-L I lag



~

Example: synthetic data generation with AR(1)
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Example: AR(2) model
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AR(2)

@ .i.d gaussian, mu=0; sig=2

Stability conditions
The Autoregressive model order 2 is (p=2) 1.(p1 + ¢2) <1
2.(p2-q) <1
3.lal < 1
Ve = U+ G1(Yemq1 — 1) +Pp Ve — 1) + &
E(y)=u
V — 2 _ o
ar(y) =o” = (1-¢p1p1—P2p2) -
-P'h_ | [
pP1 = P1po + $2p—1 (P-k=Pr) 2k
P2 = P1p1 + P2p0 o | 'r
: B I
R R
p1=¢:1(1 _¢¢2) // _ 1 i.- 3 o SUR
Dy = ¢y + ;5 (. 1234 R
2 ExPONENTIAL DECAY

c Pr-L I

WUTH SMOOTHED aﬁc/ﬁtdﬂoﬂf

Parameter estimation can be done by
means several approaches. The most
obvious is the method of moments,
where one replaces model statistics
with sample statistics and solves for
the parameters
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Moving Average (Linear]) models
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Consider the following mathematical model

Ye = U + Et +zej€t_j
j=1

MODEL STATISTICS: are all analytical
E(y) =wu

Var(y) = 0% = (1+Z] L ])

—Ok+010k4+1++0q—1bq
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Despite the name "Moving Average”, this model should not be
confused with the homonymous smoothing technique!

This is called MA(q) model, i.e. Moving Average model of order g with
0<6,<1

& is the noise term (or innovation) , purely random, i.i.d and gaussian
distributed with zero mean and variance o2

Expected mean of the model

Expected variance does not depend on autocorrelation

Autocorrelation function depends on model parameters only

The MA model is always stationary and p, =0, k>q!!



Example: MA(1) model

The Moving Average model order 1 is (g=1)

Ve =pU+ e+ 0,64
EQy)=u
Var(y) = 02 = 62(1 + 6%)

AL 1+ 62)
VERY IMPORTANT: p,.=0 , k>1

Max (p;) = 0.5
= P L I
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White noise (blue) and MA1 (red)
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Example: MA(2) model

The Moving Average model order 2 is (q=2) [ tenciseand iag
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AutoRegressive Moving Average (Linear) models




Consider the following mathematical model

p q
Ye = U+ Z ¢j()’t—j — .U) + & + 2 ngt—j
j=1 j=1

ub — puP 1 4 .. — ¢, =0

u? —0uit+.-—6,=0

This means that the model parameters must
all lie within the unit radius circle

m
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This is called ARMA(p,q) model, i.e. AutoRegressive Moving
Average model of order p,q

&; is the noise term (or innovation), purely random, i.i.d and
gaussian distributed with zero mean and variance o2

ARMA parameters must fulfill some mathematical
constraints in order to ensure model stability. Such

constraints are given by the characteristic equations
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Example: ARMA (1,1)

The ARMA (1,1) model is

Ve =U+P1(Veog — 1) + & + 0184

E(y)=u

o o (1+2¢16,+67)
Var(y) = 0% = o (1+67)

_($1+0)(A +01¢1)
T T+ 2,6, + 6D)

_ Again exponential
Pr= P1Pk-1
decay caused by the
AR(1) influence
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Stability is guarranteed by the stability of the AR(1) process,
ie. |p] <1
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ARMA processes are
wmove flexible than AR

; i 2.g.
P, of AR(L) £(&H.)

&
P of ARMA(4,1) $(%4.6,)
] e AR models wepresent
betber short memovy

processes

10 ARMA models mpmenf'
R (0) belter long memory

FIGURE 19.3.1 Correlograms p, for (a) the ARMA(I, 1) _ YOOQ%
process for various sets of parameters ¢, and €, and (b) the P

AR(1)and ARMA(I, 1) processes for which p, = 0.4.

Courtesy of P. Burlando
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